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Abstract We obtain the bound-state solutions of the radial Schrödinger equation
with the shifted Deng–Fan oscillator potential in the frame of the Nikiforov-Uvarov
method by employing Pekeris-type approximation to deal with the centrifugal term.
The analytical expressions for the energy eigenvalues and the corresponding normal-
ized wave functions are obtained in closed form for arbitrary l-state. The ro-vibrational
energy levels for a few diatomic molecules are also calculated. They are found to be
in good agreement with those ones previously obtained by the Morse potential.

Keywords Schrödinger equation · Shifted Deng–Fan oscillator potential ·
Nikiforov-Uvarov method · Approximation schemes · Diatomic molecules

1 Introduction

The most interesting phenomenon in many fields of physics and chemistry is to obtain
the exact analytical solutions of the fundamental wave equations. These exact solu-
tions play an important role in quantum mechanics since they contain all the necessary
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information regarding the quantum system under study. The two typical examples in
quantum mechanics are the exact solution of the SE for a hydrogen atom (Coulomb
field) and the harmonic oscillator [1–3]. The Mie-type and pseudo-harmonic oscil-
lator potentials are also two exactly solvable potentials [4,5]. Also, there are much
potentials that are exactly solvable for s-wave (i.e. l = 0). However, their analytical
exact solutions cannot be determined for l �= 0 and hence approximation methods are
used to solve them [6–23].

The choice of potential is crucial for molecular spectroscopy and molecular dynam-
ics. The ideal potential is chosen to behave properly at its limits of coordinates, i.e.,
V (0) = ∞ and V (∞) approaches to constant. For stable molecule the potential has a
minimum at the equilibrium bond length re, i.e., V (re) = 0 and V ′′(re) > 0.

In 1929, Morse proposed the first most widely used three-parameter solvable empir-
ical potential energy function for diatomic molecules having the form V (r − re) =
V (q) = D

[
1 − e−αq

]2
, in which D is the dissociation energy, re is the equilibrium

bond length and α denotes the range of the potential. It is simplest practical anhar-
monic oscillator model which allows for dissociation but the bond length approaches 0
for which the Morse potential goes to a large value whereas the actual potential should
approach infinity. This inherent shortcoming of the Morse potential leads to a small
wave function but not 0 for bound vibrational states as the bond length approaches 0.

In 1957, Deng and Fan [24,25] proposed a simple potential model for diatomic
molecules called the Deng–Fan (DF) oscillator potential. The DF potential was called
a general Morse potential [26,27] whose analytical expressions for energy levels and
wave functions have been derived [24–27] and related to the Manning-Rosen potential
[28,29] (also called Eckart potential by some authors [30–32]) is anharmonic potential.
It has the correct physical boundary conditions at r = 0 and ∞, and is defined by

V (r) = D

[
1 − b

eαr − 1

]2

, b = eαre − 1, r ∈ (0,∞) (1a)

and also the shifted DF (sDF) potential is

V (r) = D

[
1 − b

eαr − 1

]2

− D = D

[
b2

(eαr − 1)2
− 2b

eαr − 1

]
, r ∈ (0,∞) (1b)

where the three positive parameters D, re and α stand for the dissociation energy, the
equilibrium inter-nuclear distance and the range of the potential well, respectively.

The DF potential Eq. 1a is qualitatively similar to the Morse potential but has the
correct asymptotic behavior as the inter-nuclear distance approaches 0 [26,27] and
used to describe diatomic molecular energy spectra and electromagnetic transitions.

The Morse and the sDF potentials are very close to each other for large values of
in the regions r ∼ re and r > re, but are very different at r ∼ 0. Further, if the
two potentials are deep (D � 1), they could be well approximated by a harmonic
oscillator in the region r ∼ re [26,27]. In Fig. 1, we plot both the sDF potential
and the Morse potential using the parameters set for H2 diatomic molecule given by
D = 4.74441001 eV, α = 1.9426 A◦−1 and re = 0.7416A◦.
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Fig. 1 Shape of the sDF and Morse oscillator potentials for H2 diatomic molecule

When the parameter α in Eq. 1a goes to zero, the limits of the DF oscillator poten-
tial becomes the Kratzer-Fues molecular potential [33,34], namely, lim

α→0
VDF (r) =

D
( r−re

r

)2
. The Kratzer-Fues molecular potential has been extensively used for inves-

tigating the properties of diatomic molecules [35–37].
Mesa et al. studied the exact solvability of the s-wave bound state energy eigen-

values and eigenfunctions of the generalized Morse potential due to the fact that it
belongs to the class of the Eckart potential, a member of the hypergeometric Natanzon
potentials which can be solved algebraically by means of SO(2, 2) symmetry algebra
[26,27]. Dong and Gu have approximately presented the bound state solutions of the
SE with the Deng–Fan oscillator interaction [38]. Ikhdair solved the Dirac equation
for the Deng–Fan oscillator by using an improved approximation scheme to deal with
the centrifugal term [39,40].

The aim of this work is to obtain he approximate bound state energy eigenvalue
equation and the corresponding normalized wave functions for the diatomic molecules
subject to the empirical sDF oscillator interaction using the parametric NU method
[39–44]. We also investigate the equivalence of the sDF oscillator potential and com-
pare it with the Morse potential according to quantitative tests on four molecules.

The present analytical solution to the Schrödinger equation (SE) associated with
sDF potential is useful since the eigenvalues and wave functions permit exact determi-
nation of transition frequencies, matrix elements and oscillator strengths. Furthermore,
we apply our results to obtain the numerical ro-vibrational spectrum of some diatomic
molecules and compare with those ones obtained with the Morse potential.

The paper is organized as follows. In Sect. 2, we present the parametric NU method.
In Sect. 3, we solve the radial SE for the empirical sDF oscillator potential to obtain
the energy spectrum and the corresponding normalized wave functions. The energy
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levels for a few diatomic molecules are also presented. Finally our conclusion is given
in Sect. 4.

2 Parametric NU method

The NU method is used to solve second order differential equations with an appropriate
coordinate transformation s = s(r) [41]

ψ ′′
n (s)+ τ̃ (s)

σ (s)
ψ ′

n (s)+ σ̃ (s)

σ 2 (s)
ψn (s) = 0, (2)

where σ (s) and σ̃ (s) are polynomials, at most of second degree, and τ̃ (s) is a first-
degree polynomial. To make the application of the NU method simpler and direct
without need to check the validity of solution. We present a shortcut for the method.
So, at first we write the general form of the Schrödinger-like Eq. 2 in a more general
form applicable to any potential as follows [42–44]

ψ ′′
n (s)+

(
c1 − c2s

s (1 − c3s)

)
ψ ′

n (s)+
(−As2 + Bs − C

s2 (1 − c3s)2

)
ψn (s) = 0, (3)

satisfying the wave functions

ψn(s) = φ(s)yn(s). (4)

Comparing Eq. 3 with its counterpart Eq. 2, we obtain the following identifications:

τ̃ (s) = c1 − c2s, σ (s) = s (1 − c3s) , σ̃ (s) = −As2 + Bs − C. (5)

Following the NU method [41], we obtain the followings [42,43],

(1) the relevant constant:

c4 = 1

2
(1 − c1) ,

c5 = 1

2
(c2 − 2c3) ,

c6 = c2
5 + A,

c7 = 2c4c5 − B,

c8 = c2
4 + C,

c9 = c3 (c7 + c3c8)+ c6,

c10 = c1 + 2c4 + 2
√

c8 − 1 > −1,

c11 = 1 − c1 − 2c4 + 2

c3

√
c9 > −1, c3 �= 0,

c12 = c4 + √
c8 > 0,
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c13 = −c4 + 1

c3
(
√

c9 − c5) > 0, c3 �= 0. (6)

(2) the essential polynomial functions:

π (s) = c4 + c5s − [(√
c9 + c3

√
c8

)
s − √

c8
]
, (7)

k = − (c7 + 2c3c8)− 2
√

c8c9, (8)

τ (s) = c1 + 2c4 − (c2 − 2c5) s − 2
[(√

c9 + c3
√

c8
)

s − √
c8

]
, (9)

τ ′ (s) = −2c3 − 2
(√

c9 + c3
√

c8
)
< 0. (10)

(3) The energy equation:

c2n − (2n + 1) c5 + (2n + 1)
(√

c9 + c3
√

c8
) + n (n − 1) c3

+c7 + 2c3c8 + 2
√

c8c9 = 0. (11)

(4) The wave functions

ρ (s) = sc10 (1 − c3s)c11 , (12)

φ (s) = sc12 (1 − c3s)c13 , c12 > 0, c13 > 0, (13)

yn (s) = P(c10,c11)
n (1 − 2c3s) , c10 > −1, c11 > −1, (14)

ψnl (s) = Nnls
c12 (1 − c3s)c13 P(c10,c11)

n (1 − 2c3s) . (15)

where P(μ,ν)n (x), μ > −1, ν > −1, and x ∈ [−1, 1] are Jacobi polynomials with

P(α,β)n (1 − 2s) = (α + 1)n
n! 2 F1(−n, 1 + α + β + n;α + 1; s), (16)

and Nnl is a normalization constant. Also, the above wave functions can be expressed
in terms of the hypergeometric function as

ψnl (s) = Nnls
c12 (1 − c3s)c13

2 F1(−n, 1 + c10 + c11 + n; c10 + 1; c3s) (17)

where c12 > 0, c13 > 0 and s ∈ [0, 1/c3], c3 �= 0.
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3 Arbitrary l-state solutions for the sDF oscillator potential

To study any quantum physical system characterized by the empirical exponential
potential Eq. 1, we solve the following SE [1,2]

(
P2

2μ
+ V (r)

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (18)

where V (r) is taken as sDF oscillatory potential in Eq. (1b) andμ is the reduced mass.
Inserting the wave functions ψ(r, θ, ϕ) = u(r)Ylm(θ, ϕ), with u(r) = R(r)/r into
Eq. (18), we obtain the radial SE for any l-state as

[
d2

dr2 + 2μ

h̄2

(
Enl − D

[
b2

(eαr − 1)2
− 2b

eαr − 1

])
− l(l + 1)

r2

]
Rnl(r) = 0. (19)

In Fig. 2, we plot effective sDF potential, i.e. Vef f (r) = Vs DF (r)+ l(l + 1)/r2, with
different values of centrifugal term for the H2 diatomic molecule. Because of the cen-
trifugal term, Eq. 19 can not be solved analytically for l �= 0. Therefore, we attempt
to use the following improved new approximation scheme to deal with this term near
the minimum point r = re [39,40,45,46]

Fig. 2 Shape of the sDF together with different values of centrifugal term for H2 diatomic molecule
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1

r2 ≈ α2
[

d0 + e−αr

(1 − e−αr )2

]

=α2
[

d0+ 1

(αr)2
− 1

12
+ (αr)2

240
− (αr)4

6048
+ (αr)6

172800
+ O

(
(αr)8

)]
. (20)

In the limiting case when αr � 1, the value of the dimensionless constant d0 = 1/12
and the screening parameter α has the unit of 1/r. It is found that the approxima-
tion Eq. 20 surpasses the usual approximation [47,48] and reduces to 1/r2 once the
parameterα goes to zero, that is,

lim
α→0

α2
(

d0 + 1

eαr − 1
+ 1

(eαr − 1)2

)
= 1

r2 . (21)

Now, substituting Eq. 21 into Eq. 19 and using the transformation of variables
s = e−αr which maps the half-line (0,∞) into the interval (0, 1), that maintains
the finiteness of the transformed wave functions on the boundaries, we then obtain

{
d2

ds2 + 1 − s

s(1 − s)
+ 1

α2s2(1 − s)2

×
[
εnl(1−s)2−db

(
(2+b)s2−2s

)
−α2l(l+1)

(
d0(1−s)2+s

)]}
Rnl(r) = 0,

(22a)

εnl = 2μEnl

h̄2 and d = 2μD

h̄2 . (22b)

Further, comparing Eq. 22 with Eq. 3, we obtain the following constants:

c1 = 1, A = 1

α2 (db(2 + b)− εnl)+ l(l + 1)d0,

c2 = 1, B = 2

α2 (db − εnl)+ l(l + 1)(2d0 − 1),

c3 = 1, C = − 1

α2 εnl + l(l + 1)d0. (23)

The remaining coefficients can be found via Eq. 6 which are displayed in Table 1. By
using Eq. 11 and constants in Table 1, one can easily find the energy formula

Enl = h̄2

2μ
l(l + 1)α2d0 − h̄2α2

2μ

[ μ

h̄2α2 b(2 + b)D

n + δl
− n + δl

2

]2

, (24)

with

δl = 1

2

(

1 +
√

(1 + 2l)2 + 8μ

h̄2α2
Db2

)

≥ 1. (25)
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Table 1 The specific values for
the parametric constants

Constant Analytical value

c4 0

c5 − 1
2

c6 A + 1
4

c7 −B

c8 C

c9
1
4 [4 (A − B + C)+ 1]

c10 2
√

C

c11
√

4 (A − B + C)+ 1

c12
√

C

c13
1
2

[
1 + √

4 (A − B + C)+ 1
]

Table 2 The potential model parameters for some diatomic molecules

Molecule μ(amu) a(A◦−1) re(A◦) D(cm−1)

H2 [49,50] 0.50391 1.9426 0.7416 38,266

Li H [6] 0.8801221 1.1280 1.5956 20,287

C O [6] 6.8606719 2.2994 1.1283 90,540

HCl [6] 0.9801045 1.8677 1.2746 37,255

In Table 2, we present the potential parameters taken from Refs. [6,49–51] and
used to generate the energy spectra for a few diatomic molecules H2, Li H, CO
and HCl. Our results are given in Table 3 together with the ones for the Morse
potential [49,50]. It is worthy to note that h̄c = 1973.29eV A0 [4,11,49–52] and
1 amu = 931.494028MeV /c2 [53] are used in the present calculations. Also, we
obtained results numerically by using the amplitude phase (AP) method [54–57] to
test the accuracy of our results. We noticed from Table 3 that the present approxi-
mation works well for the lowest states since this approximation is derived for the
case α approaches 0, the low screening regime (cf. Eq. 21. In Ref. [49,50], one of
us used a parametric NU method derived for any exponential-type potential to obtain
the bound state solutions of the spatially-dependent mass Schrödinger equation with
the generalized q-deformed Morse potential for any rotational quantum number l.
However, the results of the present work are found using a more generalized form of
the exponential-type potential and also a different approximation formula.

Let us now turn to the calculation of the radial wave functions. Using Eq. 17 and
constants in Table 1, one finds

Rnl(r) = Nnle
−ηαr (1 − e−αr )δl P(2η,2δl−1)

n

(
1 − 2e−αr ) ,

= Nnl
(2η + 1)n

n! e−ηαr (1 − e−αr )δl 2 F1
(−n, n + 2η + 2δl; 1 + 2η; e−αr ) ,

(26)
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Table 3 The energy levels for a few diatomic molecules obtained from the sDF and Morse oscillator
potentials

n l −Enl (eV ) NU −Enl (eV ) AP −Enl (eV ) [49,50]

H2

0 0 4.39444 4.39444 4.47601

5 4.17644 4.18054 4.25880

10 3.62165 3.63782 3.72194

5 0 1.75835 1.75835 2.22052

5 1.61731 1.62548 2.04355

10 1.26034 1.29257 1.60391

7 0 1.07756 1.07756 1.53744

5 0.96174 0.97232 1.37656

10 0.66976 0.71172 0.97581

Li H

0 0 2.41195 2.41195 2.42886

5 2.38348 2.38458 2.40133

10 2.30815 2.31229 2.32884

5 0 1.51628 1.51628 1.64771

5 1.49278 1.49429 1.62377

10 1.43062 1.43627 1.56074

7 0 1.22340 1.22340 1.37756

5 1.20173 1.20344 1.35505

10 1.14444 1.15083 1.29580

C O

0 0 11.08068 11.08068 11.0915

5 11.07247 11.07354 11.0844

10 11.05057 11.05449 11.0653

5 0 9.68809 9.68809 9.79518

5 9.68017 9.68130 9.78833

10 9.65905 9.66321 9.77009

7 0 9.15911 9.15911 9.29918

5 9.15131 9.15247 9.29246

10 9.13050 9.13476 9.27455

HCl

0 0 4.41705 4.41705 4.43556

5 4.37403 4.37843 4.39682

10 4.25973 4.27591 4.29408

5 0 2.66574 2.66574 2.80506

5 2.62859 2.63411 2.77209

10 2.52989 2.55027 2.68471

7 0 2.09652 2.09652 2.25701

5 2.06161 2.06768 2.22634

10 1.96888 1.99127 2.14511
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with

η =
μ

h̄2α2 b(2 + b)D

n + δl
− n + δl

2
(27)

and Nnl is the normalization constant. Here P(a,b)n (x) is the Jacobi polyno-
mial and 2 F1 (−n, β; γ ; z) is the hypergeometric function. The normalization con-
stant Nnl can be found in closed form by using the normalization condition:∫ ∞

0 |Rnl(r)|2 dr = ∫ 1
0 |Rnl(s)|2 ds

αs = 1, where s = e−αr , and obtain

|Nnl |2
1∫

0

s2η−1 (28)

(1 − s)2δl [2 F1 (−n, n + 2η + 2δl; 2η + 1; s)]2 ds = α

(
n!�(2η + 1)

�(2η + n + 1)

)2

.

With the help of the formula [58,59]

1∫

0

s2a−1 (1 − s)2(b+1) [2 F1 (−n, n + 2 (a + b + 1) ; 2a + 1; s)]2 ds

= (n+b+1) n!� (n+2b+2) � (2a) � (2a+1)

(n+a+b+1) � (n+2a+1) � (n+2 (a+b+1))
, a > −1/2, b > −3/2, (29)

and setting a = η and b = δl − 1, we then calculate the normalization constant from
Eq. 28 as

Nnl =
√

2ηαn! (n + η + δl) � (n + 2 (η + δl))

(n + δl) � (n + 2η + 1) � (n + 2δl)
. (30)

For the ground state, n = 0, the normalization factor is

N0l =
√

α (η + δl)

δl B(2η, 2δl)
, B(2η, 2δl) = � (2η + 1) � (2δl)

2η� (2η + 2δl)
. (31)

4 Conclusion

In this work, we have obtained the bound state solutions of the radial SE with the shifted
Deng–Fan oscillator potential in the framework of the parametric NU method. The
analytical expressions for the energy eigenvalues and the corresponding wave func-
tions are obtained in closed form. In Table 3, we present the numerical ro-vibrational
energy states of a few diatomic molecules with various arbitrary values of rotational
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and vibrational quantum numbers. It is worthy to note that in the examples considered
the Deng–Fan oscillator potential does not predict observed energy levels significantly
better than the Morse potential despite its correct asymptotic behavior. Even though the
present numerical results are in good agreement with those ones obtained previously
by using the Morse oscillator potential.
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